W-20Cu复合材料热变形行为及应变补偿本构模型Thermal deformation behavior and strain compensation constitutive model of W-20Cu composites
彭付申;陈鑫;袁战伟;周亮;张怀龙;郭亚杰;
摘要(Abstract):
用Gleeble-3800热模拟试验机对W-20Cu复合材料进行热压缩试验,在应变率为0.001~1 s(-1)、变形温度为1 073~1 223 K下进行热变形,研究应变率和温度对力学性能的影响。考虑应变对材料本构参数的影响,基于Arrhenius模型,建立W-20Cu复合材料的应变补偿本构模型,通过误差分析对应变补偿本构模型的准确性进行验证。结果表明:峰值应力随温度升高而降低,随应变率增大而增大,相对于应变率,W-20Cu复合材料对温度更敏感。基于应变补偿的W-20Cu复合材料本构模型能较好的预测热变形过程中的流变应力,其预测值与试验值的线性相关系数为0.973,平均相对误差为3.418%。
关键词(KeyWords): W-20Cu复合材料;热变形;力学性能;本构方程
基金项目(Foundation): 陕西省重点研发计划一般项目(2021GY-211;2021GY-244)
作者(Authors): 彭付申;陈鑫;袁战伟;周亮;张怀龙;郭亚杰;
DOI: 10.14024/j.cnki.1004-244x.20210908.004
参考文献(References):
- [1]黄丽枚,罗来马,丁孝禹,等.钨铜复合材料的研究进展[J].机械工程材料,2014,38(4):1-6.HUANG Limei,LUO Laima,DING Xiaoyu,et al.Research progress of W-Cu composites[J].Materials for Mechanical Engineering,2014,38(4):1-6.(in Chinese)
- [2]KIM Y D,OH N L,OH S T,et al.Thermal conductivity of W-Cu composites at various temperatures[J].Materials Letters,2001,51:420-424.
- [3]杨明川,宋贞祯,卢柯.W-20%Cu纳米复合粉的制备[J].金属学报,2004,40(6):639-642.YANG Mingchuan,SONG Zhenzhen,LU Ke.Synthesis of W-20%Cu nanocomposite powders[J].Acta Metallurgica Sinica,2004,40(6):639-642.(in Chinese)
- [4]朱永兵,沈以赴.W-Cu纳米复合前驱体粉末的机械合金化制备[J].稀有金属材料与工程,2007,36(6):1091-1094.ZHU Yongbing,SHEN Yifu.Fabrication of W-Cu nano-crystalline composite precursor powders by mechnical alloying[J].Rare Metal Materials and Engineering,2007,36(6):1091-1094.(in Chinese)
- [5]周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005,10(1):21-25.ZHOU Wuping,LüDaming.Development of application and production in W-Cu materials[J].Powder Metallurgy Materials Science and Engineering,2005,10(1):21-25.(in Chinese)
- [6]赵艳平,张立武,杜晓斌.熔渗法制备的W-Cu高温流动特性及其对塑性变形的影响[J].热加工工艺,2008,37(8):39-47.ZHAO Yanping,ZHANG Liwu,DU Xiaobin.High-temperature flow property of W-Cu prepared by infiltration and its effect on plastic deformation[J].Hot Working Technology,2008,37(8):39-47.(in Chinese)
- [7]刘勇,孙永伟,田保红,等.钨含量对W-Cu复合材料高温变形行为的影响[J].中国有色金属学报,2012,22(9):2553-2558.LIU Yong,SUN Yongwei,TIAN Baohong,et al.Effect of Wcontent on hot deformation behavior of W-Cu composite at elevated temperature[J].The Chinese Journal of Nonferrous Metals,2012,22(9):2553-2558.(in Chinese)
- [8]王凌浩,莫玉梅,黄永程,等.W-35Cu复合材料动态压缩变形行为及本构关系[J].热加工工艺,2020,49(5):91-96.WANG Linghao,MO Yumei,HANG Yongcheng,et al.Dynamic compression deformation behavior and constitutive relationship of W-35Cu composites[J].Hot Working Technology,2020,49(5):91-96.(in Chinese)
- [9]SANDSTR?M R,LAGNEBORG R.A model for hot working occuring by recrystallization[J].Acta Metallurgica,1975,23:387-398.
- [10]SELLARS C,MCTEGART W J.On the mechanism of hot deformation[J].Acta Metallurgica,1966,14:1136-1138.
- [11]李旺珍,孙有平,何江美,等.Al-Cu-Mg-Sc合金的高温流变本构关系研究[J].热加工工艺,2020,49(14):58-61.LI Wangzhen,SUN Youping,HE Jiangmei,et al.Constitutive equation of rheological properties of Al-Cu-Mg-Sc alloy at elevated temperature[J].Hot Working Technology,2020,49(14):58-61.(in Chinese)
- [12]DAI Qingsong,DENG Yunlai,TANG Jianguo,et al.Deformation characteristics and strain-compensated constitutive equation for AA5083 aluminum alloy under hot compression[J].Transactions of Nonferrous Metals Society of China,2019,29:2252-2261.
- [13]姜炳春,卢立伟,文泽军,等.LZ92镁锂合金流变应力预测模型[J].材料热处理学报,2020,41(9):147-154.JIANG Bingchun,LU Liwei,WEN Zejun,et al.Flow stress prediction model of LZ92 magnesium lithium alloy[J].Transactions of Materials and Heat Treatment,2020,41(9):147-154.(in Chinese)
- [14]HAN Ying,YAN Sun,YIN Baoguo,et al.Effects of temperature and strain rate on the dynamic recrystallization of a medium high-carbon high-silicon bainitic steel during hot deformation[J].Vacuum,2018,148:78-87.
- [15]QIAN Dongsheng,PENG Yaya,DENG Jiadong.Hot deformation behavior and constitutive modeling of Q345E alloy steel under hot compression[J].Journal of Central South University,2017,24:284-295.
- [16]EL-ATY A A,XU Yong,HA Songyul,et al.Computational homogenization of tensile deformation behaviors of a third generation Al-Li alloy 2060-T8 using crystal plasticity finite element method[J].Materials Science&Engineering:A,2018,731:583-594.