机器人手臂材料的弯曲极限测试Bending limit test of robot arm material
夏春荣;
摘要(Abstract):
用两种材料制备Smooth-on Ecoflex00-30超弹体,测试其力学性能;通过Recur Dyn构建仿生机械臂有限元模型,进行弯曲性能测试。结果表明:两种材料配比为1∶1时,断裂强度和伸长率最大;随固化温度升高,样品抗拉强度、伸长率、硬度及弹性模量先增后降;相同拉伸距离,拉伸时间越长抗拉强度越小,拉伸频率越大,抗拉强度越大;随拉力增加,样品弯曲度增大,当拉力为2.75 N时,达到弯曲极限;线缆两侧受力忽略不计,表面分布力是影响样品弯曲的主要原因。
关键词(KeyWords): 机器人手臂;弹性体材料;弯曲极限测试;有限元模型;平面弯曲;拉伸频率
基金项目(Foundation): 国家重点研发计划项目(2019YFB1312604)
作者(Authors): 夏春荣;
DOI: 10.14024/j.cnki.1004-244x.20210618.001
参考文献(References):
- [1]罗召俊,王帅,程广贵,等.基于弹性体材料仿生手的设计、制造及其控制[J].机械工程学报,2019,55(11):69-75.LUO Zhaojun,WANG Shuai,CHENG Guanggui,et al. Design-ing,manufacturing and controlling of the elastic materialsbased bionic hand[J]. Journal of Mechanical Engineering,2019,55(11):69-75.(in Chinese)
- [2]郭正波,夏利平,何正宏,等.阻燃热塑性聚酯弹性体复合材料制备及性能[J].工程塑料应用,2020,48(4):20-24.GUO Zhengbo,XIA Liping,HE Zhenghong,et al. Prepartionand properties of flame retardant thermoplastic polyester elas-tomer composites[J]. Engineering Plastics Application,2020,48(4):20-24.(in Chinese)
- [3]杨帅,薛岚.基于阻抗控制的双臂机器人关节限制规避仿真研究[J].中国工程机械学报,2020,18(3):195-198.YANG Shuai,XUE Lan. Simulation study on joint limitationavoidance of dual-arm robot based on impedance control[J].Chinese Journal of Construction Machinery,2020,18(3):195-198.(in Chinese)
- [4]李赵春,李思豪,董帅.磁流变弹性体的制备及其摩擦磨损特性测试[J].功能材料,2019,50(12):12148-12156.LI Zhaochun,LI Sihao,DONG Shuai. Preparation of magneto-rheological elastomer and measurement of friction and wearcharacteristics[J]. Journal of Functional Materials,2019,50(12):12148-12156.(in Chinese)
- [5]刘新亮,王涛,刘纯林,等.阻燃聚氨酯弹性体复合材料的制备及性能研究[J].中国塑料,2019,33(5):30-36.LIU Xinliang,WANG Tao,LIU Chunlin,et al. Preparation andproperties of flame-retardant thermoplastic polyurethane com-posites[J]. China Plastics,2019,33(5):30-36.(in Chinese)
- [6]唐刚,周子健,王浩,等. Al(H2PO2)3/聚氨酯弹性体复合材料的制备及阻燃性能[J].复合材料学报,2018,35(9):2414-2423.TANG Gang,ZHOU Zijian,WANG Hao,et al. Preparation andflame retardant properties of Al(H2PO2)3/thermoplastic poly-urethane composites[J]. Acta Materiae Compositae Sinica,2018,35(9):2414-2423.(in Chinese)
- [7]杨慧,王岩,刘荣强.考虑横向曲率的超弹性铰链纯弯曲非线性力学建模与实验[J].振动与冲击,2018,37(8):47-53.YANG Hui,WANG Yan,LIU Rongqiang. Nonlinear bendingresponse of tape-spring flexure hinges under pure bending withtransverse curvature[J]. Journal of Vibration and Shock,2018,37(8):47-53.(in Chinese)
- [8]彭向峰,李录贤.超弹性材料本构关系的最新研究进展[J].力学学报,2020,52(5):1221-1232.PENG Xiangfeng,LI Luxian. State of the art of constitutive re-lations of hyperelastic materials[J]. Chinese Journal of Theo-retical and Applied Mechanics,2020,52(5):1221-1232.(inChinese)
- [9]马康,程晓辉.孔隙固体超弹性本构模型与应用[J].工程力学,2019,36(7):248-256.MA Kang,CHENG Xiaohui. The hyperelastic constitutive mod-el of porous solid and its application[J]. Engineering Mechan-ics,2019,36(7):248-256.(in Chinese)
- [10]吴杰,黄思良.基于橡胶材料超弹性的排气系统运动包络面分析[J].汽车技术,2020(3):58-62.WU Jie,HUANG Siliang. Motion envelope surface analysis forautomotive exhaust systems based on hyperelasticity of rubberlugs[J]. Automobile Technology,2020(3):58-62.(in Chinese)
- [11]丁美娟,曹贤武,梁健飞,等.超临界CO2发泡热塑性聚烯烃弹性体材料的研究[J].中国塑料,2019,33(1):1-5.DING Meijuan,CAO Xianwu,LIANG Jianfei,et al. Study on foaming properties of thermoplastic polyolefin elastomer withsupercritical CO2[J]. China Plastics,2019,33(1):1-5.(inChinese)
- [12]王沪毅,胡文军,尹益辉.数值模拟中细观泡孔构型对硅橡胶泡沫材料力学性能的影响[J].材料科学与工程学报,2019,37(1):103-107.WANG Huyi,HU Wenjun,YIN Yihui. Simulation of unit cellgeometry influence on mechanical behavior of silicon rubberfoams[J]. Journal of Materials Science and Engineering,2019,37(1):103-107.(in Chinese)
- [13]许晶,汤丽锋,王宏志,等.考虑弯曲位移影响的解析型压杆单元构造[J].江苏大学学报(自然科学版),2019,40(2):167-171.XU Jing,TANG Lifeng,WANG Hongzhi,et al. Analytical ele-ment for compressive bar considering flexural displacement[J]. Journal of Jiangsu University(Natural Science Edition),2019,40(2):167-171.(in Chinese)
- [14]张英琦,乐贵高,马大为,等.适配器新型基体材料热-粘-超弹本构模型研究[J].兵器装备工程学报,2019,40(6):10-14.ZHANG Yingqi,LE Guigao,MA Dawei,et al. Research onthermo-visco-hyperelastic constitutive model of new adapterbase material[J]. Journal of Sichuan Ordnance,2019,40(6):10-14.(in Chinese)
- [15]栗永峰,周伟勇,杜鹏程,等.力热联合载荷下炭纤维缠绕壳体轴压稳定性分析[J].固体火箭技术,2019,42(5):622-627.LI Yongfeng,ZHOU Weiyong,DU Pengcheng,et al. Analysisof axial compression stability of carbon fiber composite shellat heat combined loading conditions[J]. Journal of SolidRocket Technology,2019,42(5):622-627.(in Chinese)