多晶锗塑性切削机制和力学特性的仿真研究Simulation on ductile cutting mechanism and mechanical properties of polycrystalline germanium
余证;杨晓京;刘宁;
摘要(Abstract):
为探究多晶锗纳米尺度的塑性切削机制和力学特性,采用分子动力学方法(MD)模拟金刚石刀具纳米切削多晶锗过程,对材料的晶体结构,位错分布及演变,应力传导和切削力波动规律进行详细分析;并研究不同切削参数对加工过程的影响。结果表明:晶体结构的非晶转变和晶界与晶体滑移,位错等缺陷相互作用,导致切削力周期性波动;切削过程中非晶体区沿晶界扩展,但晶界阻碍非晶体区跨晶界扩展;位错仅存在晶界附近,而位错类型和数量随晶界处的原子运动和破坏程度发生改变,材料塑性去除主要由晶粒内部的非晶转变和晶界的位错运动所致;晶界的等效应力比晶粒大,分布和传导方向与非晶体原子的一致;切削速度增加使切削区温度上升、应力和切削力减小;切削深度增加易使缺陷原子数量上升,位错线长度降低。通过Diamond结构多晶的研究结果证实多晶锗切削仿真的正确性。
关键词(KeyWords): 多晶锗;晶体结构演变;分子动力学;应力传导;晶界
基金项目(Foundation): 国家自然科学基金(51765027)
作者(Author): 余证;杨晓京;刘宁;
Email:
DOI: 10.14024/j.cnki.1004-244x.20191104.001
参考文献(References):
- [1]CAROLAN D. Recent advances in germanium nanocrystals:Synthesis,optical properties and applications[J]. Progress in Materials Science,2017,90:128-158.
- [2]张小东,赵飞燕.金属锗在高新技术领域中的应用[J].煤炭与化工,2018,41(2):32-34.
- [3]BLAKE P N,SCATTERGOOD R O. Ductile-regime machining of germanium and silicon[J]. Journal of the American Ceramic Society,1990,73(4):949-957.
- [4]LIU Kui,LI Xiaoping,LIANG S Y. The mechanism of ductile chip formation in cutting of brittle materials[J]. The International Journal of Advanced Manufacturing Technology,2007,33(9):875-884.
- [5]CANTWELL P R,TANG Ming,DILLON S J,et al. Grain boundary complexions[J]. Acta Materialia,2014,62:1-48.
- [6]SHUGUROV A,PANIN A,DMITRIEV A,et al. The effect of crystallographic grain orientation of polycrystalline Ti on ploughingunderscratchtesting[J]. Wear,2018,408:214-221.
- [7]WU Zhonghuai,LIU Weidong,ZHANG Liangchi. Revealing the deformation mechanisms of 6H-silicon carbide under nano-cutting[J]. Computational Materials Science,2017,137:282-288.
- [8]LIU Dehao,WANG Gang,YU Jianchao,et al. Molecular dynamics simulation on formation mechanism of grain boundary steps in micro-cutting of polycrystalline copper[J]. Computational Materials Science,2017,126:418-425.
- [9]LI Jia,LIU Bin,LUO Hao,et al. A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates[J]. Computational Materials Science,2016,118:66-76.
- [10]LIU Haitao,HAO Mengjiao,TAO Mingfang,et al. Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper[J]. Applied Physics A,2019,125(3):214.
- [11]HE Genchun,XU Chao,LIU Chunmei,et al. Grain size and temperature effects on the indentation induced plastic deformations of nano polycrystalline diamond[J]. Applied Surface Science,2019,480:349-360.
- [12]XU T,LI M. Topological and statistical properties of a constrainedVoronoitessellation[J]. Philosophical Magazine,2009,89(4):349-374.
- [13]LAI Min,ZHANG Xiaodong,FANG Fengzhou,et al. Fundamental investigation on partially overlapped nano-cutting of monocrystalline germanium[J]. Precision Engineering,2017,49:160-168.
- [14]MAHDIZADEH S J,AKHLAMADI G. Optimized Tersoff empirical potential for germanene[J]. Journal of Molecular Graphics and Modelling,2017,72:1-5.
- [15]TERSOFF J. Modeling solid-state chemistry:Interatomic potentials for multicomponent systems[J]. Physical Review B,1989,39(8):5566.
- [16]LIU Yao,LI Beizhi,KONG Lingfei. A molecular dynamics investigation into nanoscale scratching mechanism of polycrystalline silicon carbide[J]. Computational Materials Science,2018,148:76-86.
- [17]MARAS E,TRUSHIN O,STUKOWSKI A,et al. Global transition path search for dislocation formation in Ge on Si(001)[J]. Computer Physics Communications,2016,205:13-21.
- [18]LAI Min,ZHANG Xiaodong,FANG Fengzhou. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium:A molecular dynamics simulation investigation[J]. Nanoscale Research Letters,2013,8(1):353.
- [19]FAN Jinjun,LI Jia,HUANG Zaiwang,et al. Grain size effects on indentation-induced plastic deformation and amorphization process of polycrystalline silicon[J]. Computational Materials Science,2018,144:113-119.
- [20]MENG Binbin,YUAN Dandan,XU Shaolin. Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation[J]. International Journal of Mechanical Sciences,2019,151:724-732.
- [21]MENONI C S,HU Jingzhu,SPAIN I L. Germanium at high pressures[J]. Physical Review B,1986,34(1):362-368.
- [22]GOEL S,KOVALCHENKO A,STUKOWSKI A,et al. Influence of microstructure on the cutting behaviour of silicon[J].Acta Materialia,2016,105:464-478.
- [23]GOEL S,FAISAL N H,LUO Xichun,et al. Nanoindentation of polysilicon and single crystal silicon:Molecular dynamicssimulation and experimental validation[J]. Journal of Physics D:Applied Physics,2014,47(27):275304.
- [24]KORYTáR D,ZáPRA?NYZ,FERRARI C,et al. Cross-sectional TEM study of subsurface damage in SPDT machining of germanium optics[J]. Applied Optics,2018,57(8):1940-1943.
- [25]YAN Jiwang,TAKAHASHI Y,TAMAKI J,et al. Ultraprecision machining characteristics of poly-crystalline germanium[J]. JSME International Journal Series C,2006,49(1):63-69.