多晶钨纳米线拉伸变形的分子动力学模拟Molecular dynamics simulation of tensile deformation of polycrystalline tungsten nanowire
徐喻琼;马小强;
摘要(Abstract):
采用分子动力学模拟方法研究不同晶粒尺寸多晶钨纳米线在拉伸过程中的应力-应变行为,详细分析晶粒尺寸对应力-应变曲线模式、弹性模量及拉伸变形机理的影响。结果表明:晶粒尺寸在(5.303~7.653)nm内的多晶钨纳米线的应力-应变曲线中存在双峰、单峰;弹性模量随晶粒尺寸的增大而增加;拉伸力学性能呈反向Hall-Petch关系;塑性变形主要在晶界处,并伴随晶粒转动;应变量达0.15时,纳米线中观察到孪晶组织;随着应变量增加,出现孪晶滑移,且孪晶附近出现局部应力集中,导致断裂。
关键词(KeyWords): 多晶纳米线;拉伸变形;塑性变形机理;分子动力学
基金项目(Foundation): 国家自然科学基金(11204158)
作者(Author): 徐喻琼;马小强;
Email:
DOI: 10.14024/j.cnki.1004-244x.20190516.003
参考文献(References):
- [1]CHIBISOVA M A,CHIBISOV A N,KARPOVICH N F. Effect of bond population on the elasticity of tungsten nanowires:Ab initio calculation[J]. Computational Materials Science,2016,114:99-101.
- [2]FENSTER Christian,SMITH Andrew Jonathan,ABTS André,et al. Single tungsten nanowires as pH sensitive electrodes[J].Electrochemistry Communications,2008,10(8):1125-1128.
- [3]CHANG Juiyung,YANG Yue,WANG Liping. Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications[J]. International Journal of Heat and Mass Transfer,2015,87:237-247.
- [4]LEE Y H,CHOI C H,JANG Y T,et al. Tungsten nanowires and their field electron emission properties[J]. Applied Physics Letters,2002,81(4):745-747.
- [5]WANG Jiangwei,ZENG Zhi,WEINBERGER Christopher R,et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten[J]. Nature Materials,2015,14:594-600.
- [6]MA Bin,RAO Qiuhua,HE Yuehui. Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire[J]. Computation Materials Science,2016,117:40-44.
- [7]SCHI?TZ J,VEGGE T,TOLLA D D F,et al. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals[J]. Physical Review B,1999,60(17):11971-11983.
- [8]PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics,1995,117(1):1-19.
- [9]MARINICA M C,VENTELON L,GILBERT M R,et al. Interatomic potentials for modelling radiation defects and dislocations in tungsten[J]. Journal of Physics:Condensed Matter,2013,25(39):395502.
- [10]BERENDSEN H J C,POSTMA J P M,GUNSTEREN F V W,et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics,1984,81(8):3684-3690.
- [11]STUKOWSKI Alexander. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool[J]. Modelling and Simulation Materials Science and Engineering,2010,18:015012.
- [12]SAHA Sourav,MOTALAB Mohammad Abdul,MAHBOOB Monon. Investigation on mechanical properties of polycrystalline W nanowire[J]. Computational Materials Science,2017,136:52-59.
- [13]涂爱东,滕春禹,王皞,等. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J].金属学报,2019,55(2):291-298.
- [14]王鹏,徐建刚,张云光,等.晶粒尺寸对纳米多晶铁变形机制影响的模拟研究[J].物理学报,2016,65(23):200-225.
- [15]AIFANTIS K E,KONSTANTINIDIS A A. Hall-Petch revisited at the nanoscale[J]. Materials Science and Engineering B:Solid-State Materials for Advanced Technology,2009,163(3):139-144.
- [16]HALL E O. The deformation and ageing of mild steel:III discussion of results[J]. Proceedings of the Physical Society Scetion B,2002,64(6):495.
- [17]PETCH N J. The cleavage strength of polycrystals[J]. Journal of Iron Steel Institute,1953,174:25-28.
- [18]SONG H W,GUO S R,HU Z Q. A coherent polycrystal model for the inverse hall-petch relation in nanocrystalline materials[J]. Nanostructured Materials,1999,11(2):203-210.